Aller au menu Aller au contenu
Grenoble INP
Innover pour un avenir durable

Institut polytechnique de Grenoble

Grenoble Institute of Technology
Innover pour un avenir durable

Première image d’une sphère réduite en 3D : faire entrer la surface de la Terre à l'intérieur d'une balle de ping-pong

Publié le 12 juillet 2017
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
Communiqué

Dans les années 1950, Nicolas Kuiper et le prix Nobel John Nash ont démontré l’existence d’une vaste classe d’objets mathématiques paradoxaux, tels que des tores plats en 3D, ou de sphères réduites, sans pouvoir toutefois les visualiser. Une équipe de mathématiciens et d’informaticiens du CNRS(1), de l’Univ. Grenoble Alpes(1) et de l’Université Claude Bernard Lyon(1), a réussi à construire et représenter visuellement une sphère réduite, cinq ans après avoir obtenu la première image d’un tore plat en 3D(2).

.jpg

.jpg

Les sphères, connues pour être rigides, ne peuvent pas être déformées isométriquement(3), c'est à dire en préservant les longueurs des courbes, avec une régularité de classe C2. En se basant sur la théorie mathématique de l’intégration convexe(4), les chercheurs sont parvenus à placer une sphère à l'intérieur d'une boule de rayon arbitrairement petit. Si l'on assimile la surface de la Terre à une sphère ronde, cette théorie permet de réduire son diamètre à celui d'un modèle réduit de globe terrestre ou d'une balle de ping-pong, tout en préservant les distances géodésiques(5). La surface obtenue, très déformée, se compose de deux calottes sphériques, parfaitement lisses, connectées par une bande équatoriale fortement déformée. Les chercheurs montrent que ce changement de structure géométrique est similaire à celui observé lorsqu'on relie une courbe de von Koch à un segment de droite. Ces résultats ouvrent des perspectives inédites en mathématiques appliquées, notamment pour la résolution de certaines équations aux dérivées partielles. Les étonnantes propriétés des fractales lisses pourraient également jouer un rôle central dans l'analyse de la géométrie des formes. Leurs résultats ont été publiés dans la revue Foundations of Computational Mathematics, le 6 juillet 2017.
 

1.        GIPSA-lab (CNRS/Grenoble INP/ Université Grenoble Alpes), laboratoire Jean Kuntzmann (CNRS/Université Grenoble Alpes/Grenoble INP) et Institut Camille Jordan (CNRS/Universités Claude Bernard Lyon 1 et Jean Monnet/Ecole centrale de Lyon/INSA de Lyon),
2.        http://www2.cnrs.fr/presse/communique/2583.htm
3.        Le résultat de John Nash et Nicolas Kuiper montre que ce n'est plus le cas si l'on autorise des déformations moins régulières, de classe C¹.
4.        Utilisée dans la détermination de solutions atypiques d’équations aux dérivées partielles.
5.        Sur le cercle, la distance géodésique est la longueur du plus petit arc de cercle joignant les deux points.



Sphère corruguée et sphère unité
© Projet Hévéa
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Rédigé par Marie Glorion

mise à jour le 19 juillet 2017

Communauté Université Grenoble Alpes
×
Afin d'améliorer la qualité de ce site et le service rendu à l'utilisateur, nous utilisons des cookies de mesure d’audience. En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies à cette fin. Pour en savoir plus