
When the Web Meets Programming
Languages and Databases:

Foundations of XML

Pierre Genevès

CNRS – LIG – WAM

May 16th, 2008

1 / 22

History of Programming Languages

1954 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002 2004

1986 1990 1990 1991 1991 1993 1994 1995 1996 1996 1997 1997 2000 2001 2001 2003 2003 2004

History of Programming Languages

©2004 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. All other trademarks are property of their respective owners. part#30417

19601954 1965 1970 1975 1980 1985 1990 1995 2000 20022001 2003 2004

For more than half of the fifty years computer programmers have been
writing code, O’Reilly has provided developers with comprehensive,
in-depth technical information. We’ve kept pace with rapidly changing
technologies as new languages have emerged, developed, and
matured. Whether you want to learn something new or need
answers to tough technical questions, you’ll find what you need
in O’Reilly books and on the O’Reilly Network.

This timeline includes fifty of the more than 2500 documented
programming languages. It is based on an original diagram created
by Éric Lévénez (www.levenez.com), augmented with suggestions
from O’Reilly authors, friends, and conference attendees.

For information and discussion on this poster,
go to www.oreilly.com/go/languageposter.

www.oreilly.com

FORTRAN (1954)

LISP (1958)

Objective CAML (1996)

C # (ISO) (2003)
Java 2 (v1.5) (2003)

2 / 22

What about Data?

• Often, data is more important
than programs (e.g. banks,
aeronautical technical
documentation, ...)

• How to ensure long-term
access to data?

3 / 22

What about Data?

• Often, data is more important
than programs (e.g. banks,
aeronautical technical
documentation, ...)

• How to ensure long-term
access to data?

• A quite old problem...
• Can we really do better with

computers?

La pierre de Rosette.

3 / 22

What has not changed for 50 years in Computer Science?

4 / 22

Standards for Data Representation

1963

ASCII

2008

5 / 22

Standards for Data Representation

1963

ASCII

1998

XML
• Before: file format tied to a processor (due to

processor-specific instructions)
• After: markup language for describing (structured)

data in itself (independently from processors)

2008

5 / 22

Back in 2008

Now
• XML is the Lingua franca for communicating on the web (documents,

mobiles data, financial data, molecules, architectures ...)
• Two key notions:

• XML Types: define constraints on children and siblings of nodes
using regular expressions

• XML Queries: expressions for selecting a set of matching nodes
(XPath standard)

6 / 22

Processing XML Documents

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

Program P

3 Essential Tasks
• Validation: check that an XML document is valid w.r.t. a given type
• Navigation/Extraction: select a set of nodes (q: XPath expression)
• Transformation: build a new document from an existing one

7 / 22

Major Challenge for the Years to Come

Data manipulations must be safe and efficient
× Do not design a nth new programming language for XML processing

! Ensure that those which are used for this purpose are safe and efficient
(whatever the programming language family is)

! Introduce XML as a first-class citizen in programming languages

Key (and hard) problem
• Reasoning with XML types and (XPath) queries

Approach
• Design static analysis methods for XML processing

8 / 22

Static Analysis for XML Processing: Examples

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

∀t ∈ Tin, does P(t) ∈ Tout?

∈
Type Tin

• Errors are very difficult to detect (invalid output, empty queries)
• Huge performance problems at execution (language overuse, tree size)
• Difficult to check properties on programs (security holes, termination...)

9 / 22

Static Analysis for XML Processing: Examples

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

q ∩ Tin
?
"= ∅

∈
Type Tin

• Errors are very difficult to detect (invalid output, empty queries)
• Huge performance problems at execution (language overuse, tree size)
• Difficult to check properties on programs (security holes, termination...)

9 / 22

Static Analysis for XML Processing: Examples

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

∈
Type TinType Tin

qoptim

q ∩ Tin
?
≡ qoptim

• Errors are very difficult to detect (invalid output, empty queries)
• Huge performance problems at execution (language overuse, tree size)
• Difficult to check properties on programs (security holes, termination...)

9 / 22

Static Analysis for XML Processing: Examples

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

∈
Type Tin

∈
Type Tin

q ∩ Tforbidden
?
$= ∅

• Errors are very difficult to detect (invalid output, empty queries)
• Huge performance problems at execution (language overuse, tree size)
• Difficult to check properties on programs (security holes, termination...)

9 / 22

Static Analysis for XML Processing: Examples

Transform(t, t’)
...
Validate(t)
...
For x in (q) do {
...
}
let y=x;
Write(y, t’)
...
Validate(t’)

∈
Type Tin

∈
Type Tin

q ∩ Tforbidden
?
$= ∅

!
Forbidden Access

• Errors are very difficult to detect (invalid output, empty queries)
• Huge performance problems at execution (language overuse, tree size)
• Difficult to check properties on programs (security holes, termination...)

9 / 22

Outline

1. The logical approach for static analysis

2. A logic of finite ordered trees for XML

3. Satisfiability-testing algorithm

10 / 22

The Logical Approach for XML Types/XPath Analysis
• Define an appropriate logic for reasoning on XML trees
• Formulate the problem into the logic and test satisfiability

q2

q1

XPath Fragment

Logic
ϕ

¬(ϕ1 ⇒ ϕ2)

XML Types
T

Satisfiability-Testing
Algorithm

Yes/No +

Translations

Advantages
• Solve problems that are boolean combination of other problems
• Provide formal proofs of safety properties and bugs
• Can be used in synthesis: query optimization, counter examples, etc.

Requirements for the Logic
1. Expressive enough to capture XPath and XML types but succinct
2. Best complexity
3. Nice algorithmic properties (not always worst case)

11 / 22

Data Model for the Logic

• XML trees are n-ary trees with one label per node
• There is a bijective encoding of unranked trees as binary trees

1
2

3

0

0
1
2
3

General Encoding
• Queries (binary relations on tree nodes)
• XML Types

12 / 22

Formulas of the Lµ Logic: the Holy Grail

• Programs α ∈ {1, 2, 1, 2} for
navigating binary trees (α = α)

1 2

Lµ # ϕ, ψ ::= formula
$ true

| σ | ¬σ atomic prop (negated)
| ! | ¬! context (negated)
| ϕ ∨ ψ | ϕ ∧ ψ disjunction (conjunction)
| 〈α〉ϕ | ¬ 〈α〉$ existential (negated)
| µX .ϕ unary fixpoint (finite recursion)
| µXi .ϕi in ψ n-ary fixpoint

13 / 22

Sample Formula and Satisfying Tree

a a

14 / 22

Sample Formula and Satisfying Tree

a ∧ 〈2〉b a

b

14 / 22

Sample Formula and Satisfying Tree

a ∧ 〈2〉b ∧ µX . 〈2〉 c ∨
〈
1
〉

X a

b

?

?

c

14 / 22

Sample Formula and Satisfying Tree

a ∧ 〈2〉b ∧ µX . 〈2〉 c ∨
〈
1
〉

X a

b

?

?

c

• Semantics: models of ϕ are finite trees for which ϕ holds at some node

! XPath and XML types can be translated into the logic, linearly

14 / 22

Outline

1. The logical approach for static analysis

2. A logic of finite ordered trees for XML

3. Satisfiability-testing algorithm

15 / 22

Deciding Satisfiability

Is a formula ψ satisfiable?
• Given ψ, determine whether there exists a tree that satisfies ψ

• Validity: test ¬ψ

• Different (more complex) than model-checking

Principles: Automatic Theorem Proving
• Search for a proof tree
• Build the proof bottom up: if ψ holds then it is necessarily somewhere up

16 / 22

Search Space Optimization

Idea: Truth Status is Inductive
• The truth status of ψ can be expressed as a function of its subformulas
• For boolean connectives, it can be deduced (truth tables)
• Only base subformulas really matter: Lean(ψ)

Lean(ψ) : 〈1〉(〈2〉(
D

1
E
(

D
2

E
(a b σ 〈1〉ϕ 〈2〉ϕ

| {z }
topological propositions

| {z }
atomic propositions in ψ

| {z }
existential subformulas

A Tree Node: Truth Assignment of Lean(ψ) Formulas
• With some additional constraints, e.g. ¬ D

1
E
(∨ ¬

D
2

E
(

17 / 22

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree
• A set of nodes is repeatedly updated (fixpoint computation)

18 / 22

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree
• Step 1: all possible leaves are added

18 / 22

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree
• Step i > 1: all possible parents of previous nodes are added

18 / 22

Satisfiability-Testing Algorithm: Principles

〈1〉ϕ

ϕ

ϕ
D

2
E

ϕ

Compatibility relation between nodes
• Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step

18 / 22

Satisfiability-Testing Algorithm: Principles

η

¬b ∧ µX .b ∨
D

2
E

X
| {z }

η

Compatibility relation between nodes
• Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step

18 / 22

Satisfiability-Testing Algorithm: Principles

Progressive bottom-up reasoning (partial satisfiability)
• 〈α〉ϕ are left unproved until a parent is connected

18 / 22

Satisfiability-Testing Algorithm: Principles

ψ

〈α〉ϕ

Termination
• If ψ is present in some root node, then ψ is satisfiable
• Otherwise, the algorithm terminates when no more nodes can be added

18 / 22

Satisfiability-Testing Algorithm: Principles

ψ

Implementation techniques
• Crucial optimization: symbolic representation

18 / 22

Correctness & Complexity

Theorem
The satisfiability problem for a formula ψ ∈ Lµ is decidable in time 2O(n)

where n = |Lean(ψ)|.

Theorem
Translations of XPath and XML types into the logic are linear.

Corollary
Decision problems involving XPath and types (e.g. typing, containment,
emptiness, equivalence) can be decided in time 2O(n).

System fully implemented: solver + XPath & XML types compilers [PLDI’07]

19 / 22

Overview of Experiments

DTD Symbols Binary type variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table: Types used in experiments.

XPath decision problem XML type Time (ms)
e1 ⊆ e2 and e2 "⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 "⊆ e6 none 41

e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table: Some decision problems and corresponding results.

For the last test, size of the Lean is 550. The search space is 2550 ≈ 10165... more
than the square number of atoms in the universe 1080

20 / 22

Tree Logics: an Overview

Expr Power:

Sat:

1968

WS2S

MSO

Hyperexponential

1977

PDL(tree)

? (<MSO)

EXPTIME

1981

CTL

FO

EXPTIME

1983

µ-calculus
(for trees)

MSO

EXPTIME

2006

Lµ
(forward & backward)

MSO
2O(n)

21 / 22

Future Works

Extending the tree logic
• Decidable counting constraints and

data-value comparisons
• Higher order XML types (web services)
• Logic for graphs (semantic web)

Some applications
• XML code optimization / security
• XML databases
• C/Java code analysis (Bohne, PALE)
• Typing of (reconfigurable) component based

languages (FScript/Sardes)
• ...

Binary Trees... (Desert of California).

22 / 22

