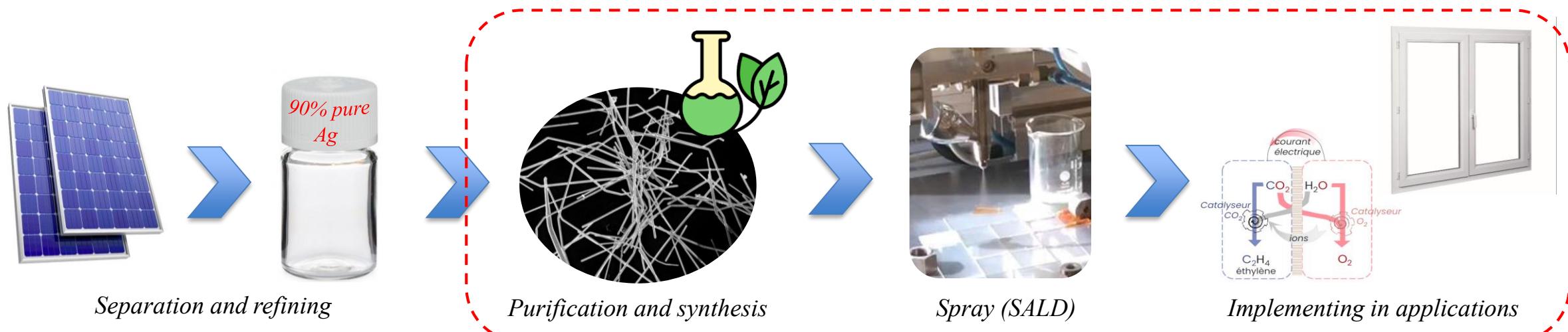




---

# Silver nanowires synthesized from end-of-life solar panels for transparent electrodes and CO<sub>2</sub> reduction to e-fuels

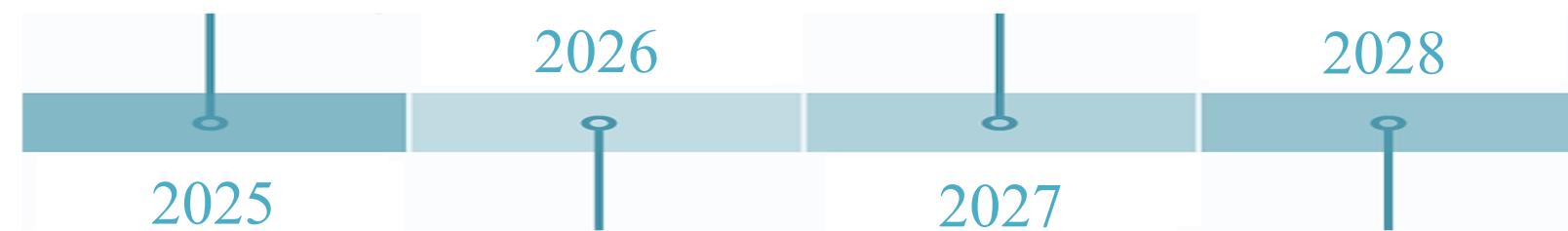

Presented by Sophie Depriester



# Topics and stakes

Context of global warming, resource depletion and environmental pollution

- ❖ Contributing to carbon and silver circular economies
- ❖ Green chemistry approach
- ❖ 2 applications :
  - ➡ IR-low-emissivity films for reduction of heat loss
  - ➡ Electroreduction of CO<sub>2</sub> to produce e-fuels
- Study of the impact of impurities (Cu, Sn and Pb) on :
  - Synthesis of silver nanowires (AgNWs)
  - Physical properties of AgNW networks : highest electrical and thermal conductivity at RT + good chemical stability
  - Stability under electrical stress or chemical wear, and performance as active material in the devices




# Running steps

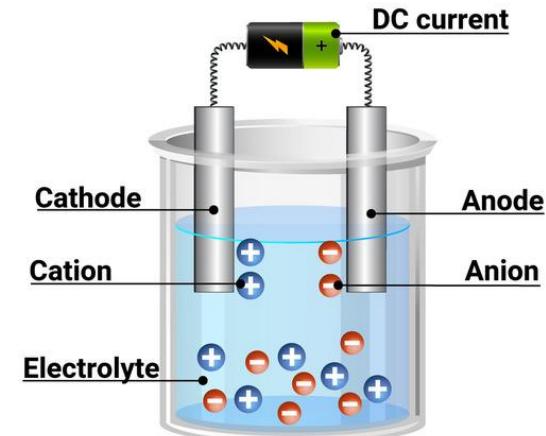
| Tasks / Year                                                        | Oct. 2025 - March 2026                                                   | April – August 2026                                                                                | Sept. 2026 – April 2027                           | May 2027 – January 2028                         | February – August 2028    |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------|
| 1/ AgNW synthesis from recycled sources                             | Ag dissolution then polyol AgNW structure synthesis, elementary analysis | Combinatorial analysis, physical modelling, study of mechanisms, optimisation by experimental plan |                                                   |                                                 |                           |
| 2/ Networks of AgNW for transparent and low-emissivity films        | Fine spray, electrical conductivity, thermal emissivity                  |                                                                                                    | Study of film stability, protective layer effects |                                                 |                           |
| 3/ Catalysts of AgNW into electrolyser of CO <sub>2</sub> reduction |                                                                          |                                                                                                    | Thick spray, catalytic flow, selectivity          | Stability in catalysis<br>Galvanic displacement |                           |
| Writing                                                             |                                                                          |                                                                                                    | Paper writing                                     | Paper writing                                   | Thesis manuscript writing |



Divided into the main phases

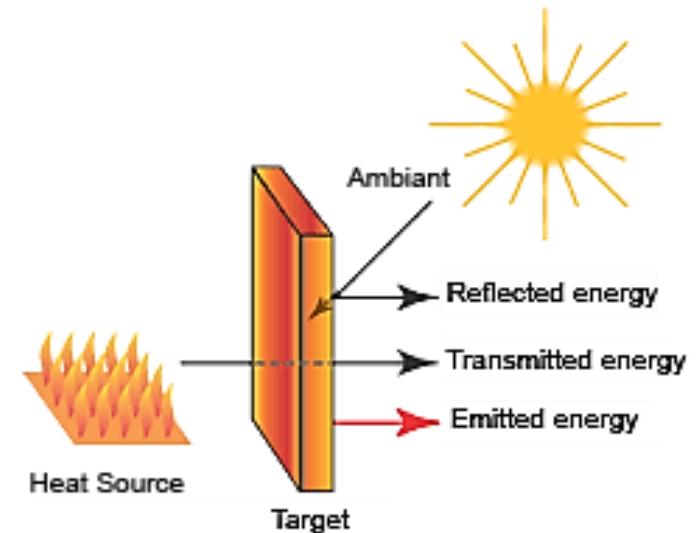


# Actors and governing bodies


- Collaboration between chemists and physicists who have solid expertise in the project :
  - ➡ Research lab **LMGP** (expert in materials science, synthesis and implementation)
  - ➡ Fundamental research lab **SyMMES** (expert in nanomaterial design and energy devices)
- Thesis director : **Pascale Chenevier** (SyMMES)
- Thesis co-director : **Daniel Bellet** (LMGP)
- Supported by a local industrial recycling company : **Rosi Alpes**
- 4 governing/supervising bodies : UGA, Grenoble INP, CNRS and CEA



# Some definitions...


## Electrolysis

- Chemical decomposition produced by passing an electric current through a liquid or solution containing ions
- Oxidation-reduction reaction by electron movement where substances gain or lose electrons
- Obtaining C<sub>2</sub>H<sub>4</sub> (ethylene) from CO<sub>2</sub> as industrial chemical input



## Emissivity

- Effectiveness in emitting energy as thermal radiation (i.e. electromagnetic radiation including both visible radiation (light) and infrared radiation)
- Ratio between 0 (ideal reflecting mirror) and 1 (ideal black body)
- Case of AgNW : very low (< 0,05)



From : <https://quizlet.com/gb/804549777/electrolysis-flash-cards/>

<https://www.flukeprocessinstruments.com/en-us/service-and-support/knowledge-center/infrared-technology/what-emissivity%3F>